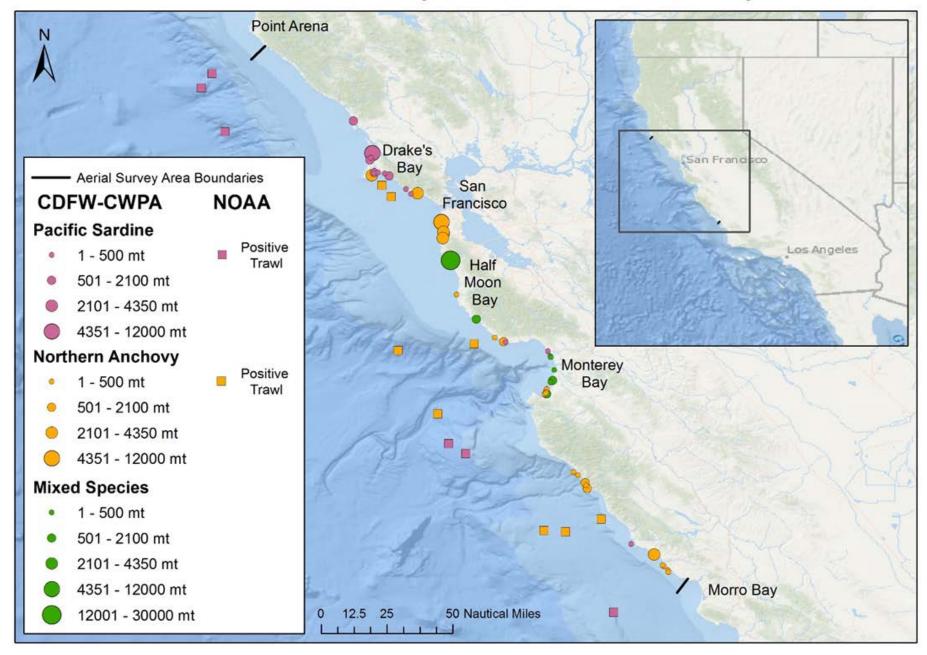
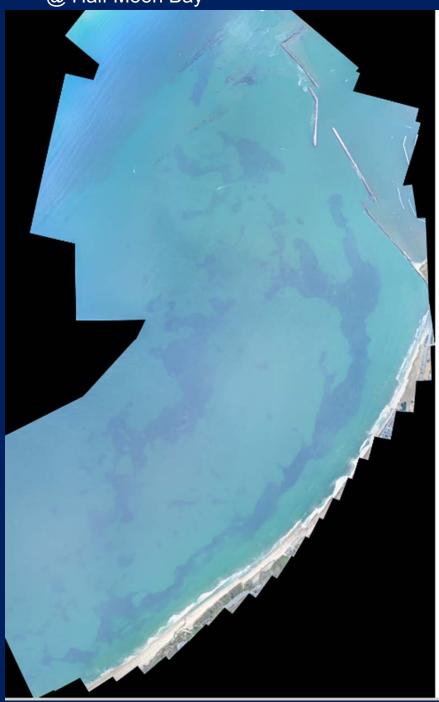
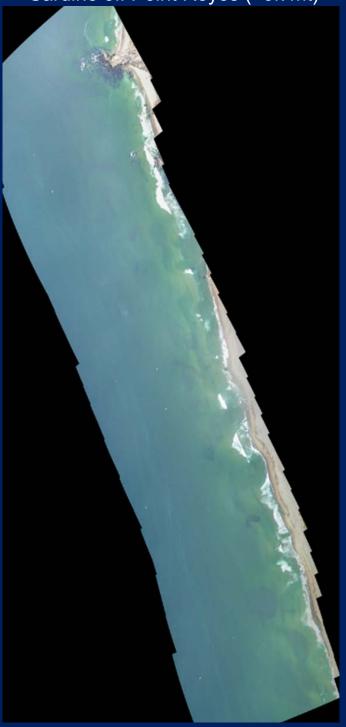
Southern California Coastal Pelagic Species Aerial Survey


California Department of Fish and Wildlife California Wetfish Producers Association

Kirk Lynn, Dianna Porzio, Trung Nguyen, Laura Ryley


Pacific Fishery Management Council January 2018

Northern California Summer 2017 Survey Observations CDFW-CWPA Aerial Survey and NOAA Acoustic-Trawl Survey



Anchovy (~27k mt) and sardine (~3k mt)

@ Half Moon Bay

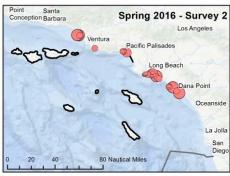
Sardine off Point Reyes (~9k mt)

Sardine and anchovy biomass estimates by year and season

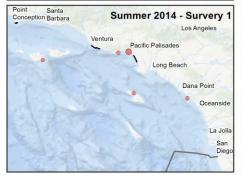
Vaar	Canan	Biomas	ss (mt)		
Year	Season	Sardine	Anchovy		
2012	Summer	9,549			
2012	Spring	2,281			
2013	Summer	4,729	13,776		
	Spring	2,998	7,310		
2014	Summer 1	56	980		
	Summer 2	0	515		
	Spring	No Survey			
2015	Summer 1	105	0		
	Summer 2	420	0		
	Spring 1	3,049	954		
2016	Spring 2	6,390	3,829		
	Summer	6,722	26		
2017	Spring	No Su	ırvey		
2017	Summer*	18,118	67,684		
	*Summer 2	2017 survey in N (

Results

Sardine


2012-2016 (S CA)

Pacific Sardine Observations





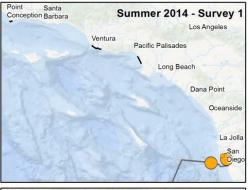


- 0.5 20 mt
- 21 100 mt
- 101 500 mt
- 9 501 6,250 mt

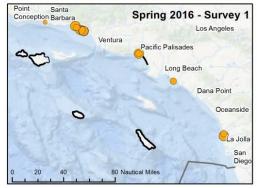
Area not surveyed

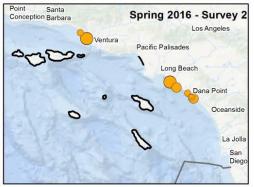
Results

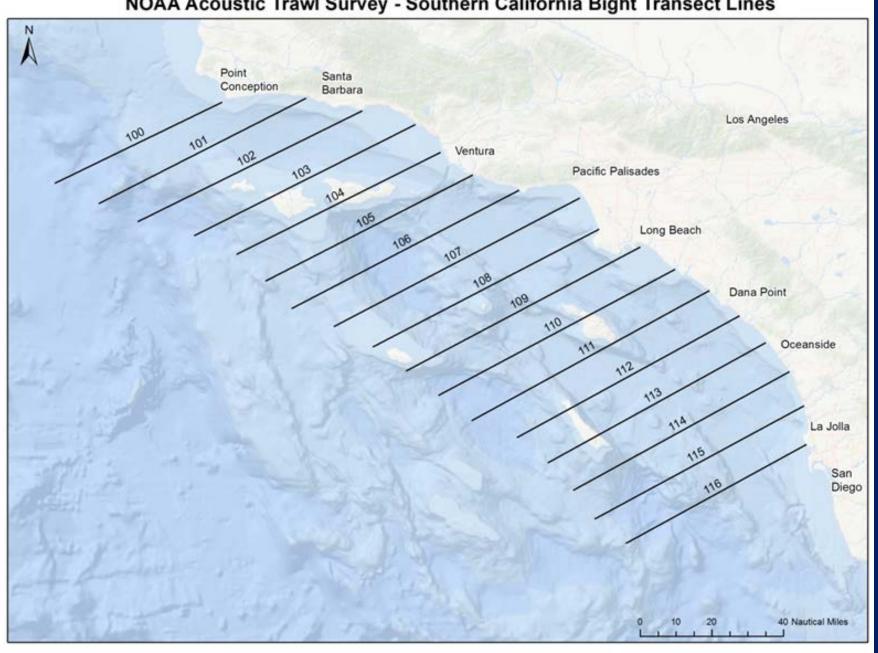
Anchovy


2013-2016

Northern Anchovy Observations







- 0.5 20 mt
- 21 60 mt
- 61 250 mt
- 251 13,700 mt
- Area not surveyed

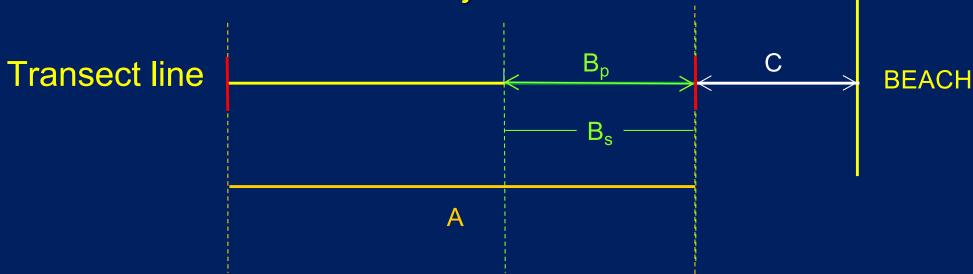
Methods - Project 2

NOAA Acoustic Trawl Survey - Southern California Bight Transect Lines

Methods – Analyses Project 2

Goal: Total SCB estimate (offshore and inshore)

1. Combine ATM (offshore) and SCCPSS (inshore) estimates for SCB


$$T = T_{ATM} + T_{SCCPSS}$$

2. Combine ATM (offshore) and calculated tonnage (inshore) from SCCPSS and ATM data

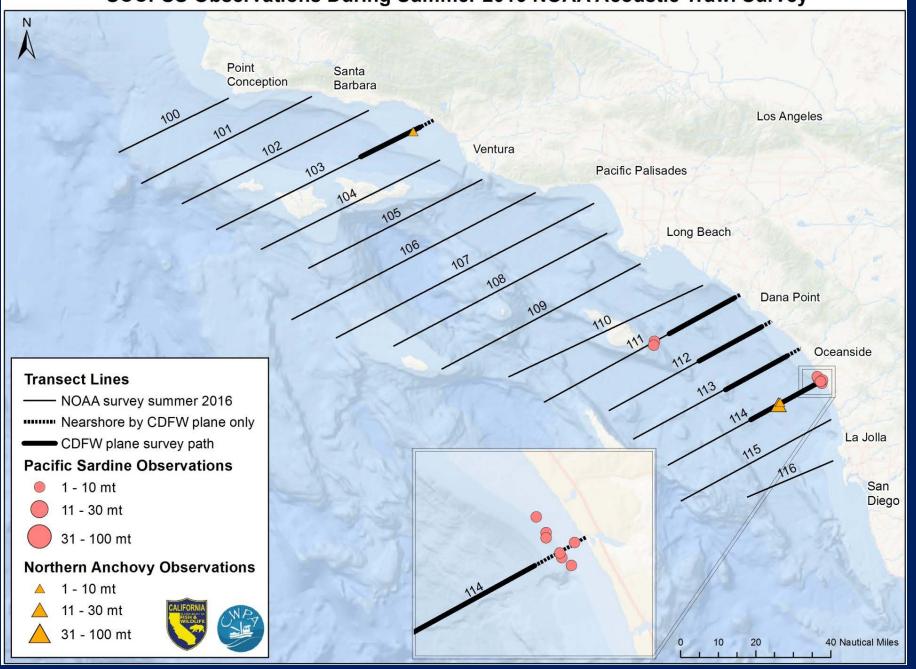
$$T = T_A + (\Sigma T_C / \Sigma T_{Bp}) * T_{Bs}$$

Methods – Analyses

Project 2

Total SCB Biomass Estimate (T) = Biomass offshore + Biomass inshore

$$T = T_A + (\Sigma T_C / \Sigma T_{Bp}) * T_{Bs}$$

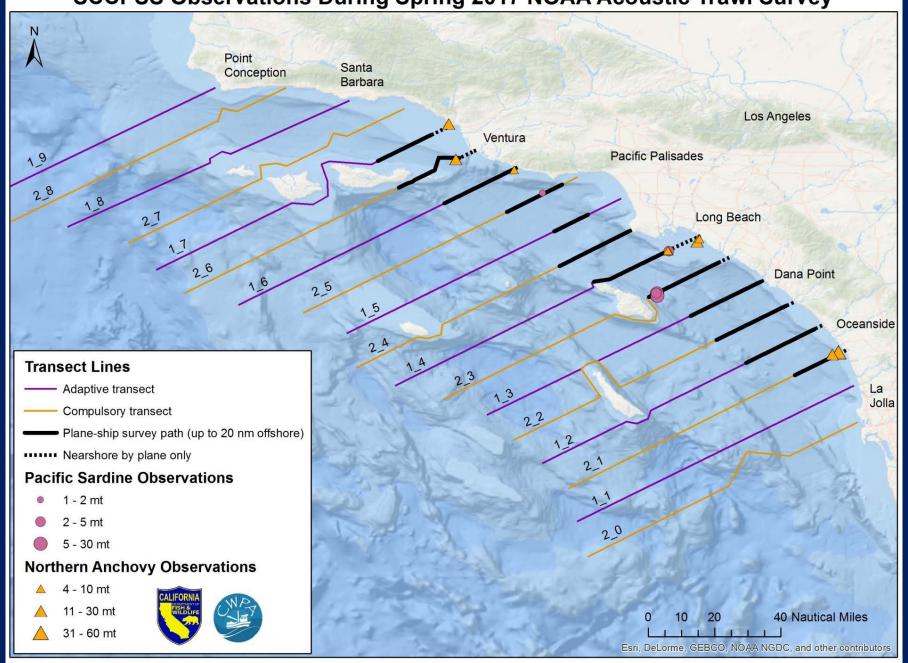

A = Area represented by ATM transect line

B = Plane-ship overlap (B_p = Transect line B flown by plane for overflight study, B_s = Area represented by ship)

C = Nearshore line flown by plane for overflight study

Results — Project 2

SCCPSS Observations During Summer 2016 NOAA Acoustic Trawl Survey



Results — Project 2

Observati	ions from S	Septembei	r 2016 SCCF	PSS Overfli	ghts of NO	AA Acoust	ic Survey
Data	Line	Bioma	ss (mt)	Offshore	Inshore	Loca	ation
Date	Line	Sardine	Anchovy	Offshore	insnore	Latitude	Longitude
9/7/2016	103		6	Χ		34.2798	-119.5077
9/14/2016	111	3		X		33.315	-118.2408
9/14/2016	111	7.2		X		33.3318	-118.236
9/15/2016	114	4			Χ	33.1452	-117.3728
9/15/2016	114	4			Χ	33.1581	-117.3794
9/15/2016	114	4.5			X	33.1485	-117.3725
9/15/2016	114		11	X		33.0379	-117.5873
9/15/2016	114	3.5			X	33.133	-117.3618
9/15/2016	114	3.5			X	33.128	-117.355
9/15/2016	114	3			Χ	33.1419	-117.3523
9/15/2016	114	2.5			Χ	33.1358	-117.3632
9/15/2016	114		0.5	Χ		33.0486	-117.5793

Results – Project 2

SCCPSS Observations During Spring 2017 NOAA Acoustic Trawl Survey

Results — Project 2

Observa ⁻	tions from	March 2017	7 SCCPSS O	verflights o	f NOAA Acc	ustic Surve	ey .
Date	Line	Bioma	ss (mt)	Offshore	Inshore	Loca	ation
Date	Line	Sardine	Anchovy	Offshore	msnore	Latitude	Longitude
3/24/2017	2_1		60	X		33.1298	-117.373
3/24/2017	2_1		30	X		33.1203	-117.404
3/26/2017	2_3	30		X		33.4244	-118.285
3/26/2017	2_3	30		X		33.4141	-118.283
3/26/2017	2_3	5		X		33.427	-118.288
3/26/2017	1_4		5		X	33.6995	-118.072
3/26/2017	1_4		10	X		33.6377	-118.226
3/26/2017	1_4		8	X		33.6412	-118.23
3/26/2017	1_4	4		X		33.6377	-118.226
3/28/2017	1_4		15		X	33.6875	-118.083
3/28/2017	2_5	2		X		33.9293	-118.86
3/30/2017	2_6		20	X		34.1006	-119.296
3/30/2017	1_7		20		Х	34.2778	-119.332
3/30/2017	1_6		4		Х	34.0464	-119.002

Results — Project 2

		Sarc	dine		Anch	novy
		ТВр	TC		ТВр	TC
	_	offshore	inshore		offshore	inshore
		30	5		60	5
Field		30			30	15
Tonnages		4			10	20
		2			8	4
	_				20	
	Σ =	66	5	-	128	44

$$T = TA + (Σ TC / Σ TBp) * TBs$$

T = Total biomass estimate (tons) in SCB waters

A = Area represented by ATM transect line (offshore)

B = Plane-ship overlap

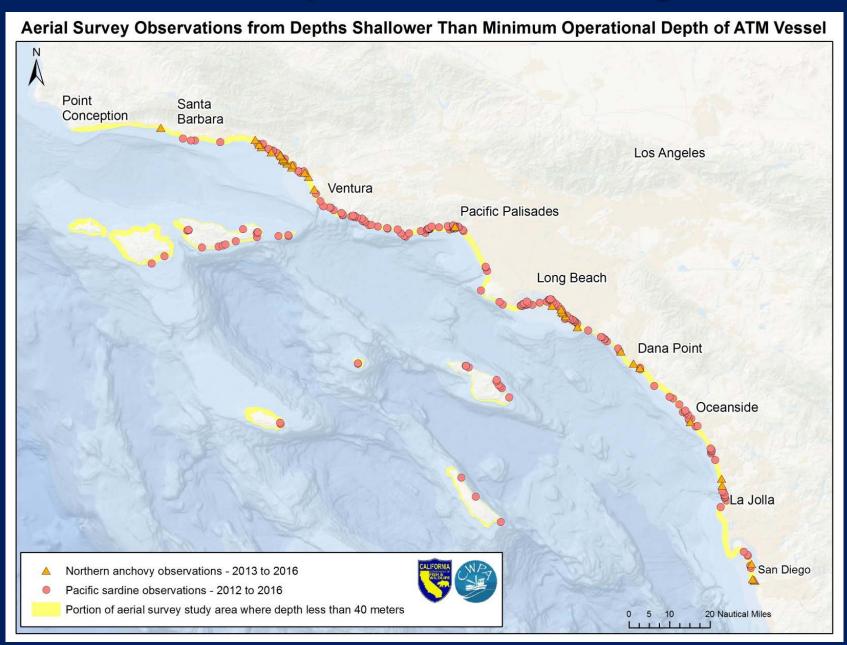
Bp = Transect line B flown by plane for overflight study

Bs = Area surveyed by ship

C = Nearshore line flown by plane for overflight study

Ex. TA 30,000 TBs 10,000

T = **30,758 33,438**


Background

- Sardine stock assessment survey indices
 - Surveys Offshore waters
- CDFW-CWPA partnership (2012+)
- Nearshore surveys -
 - California nearshore sardine fishery
 - Sardine has had historical centers of spawning and recruitment in nearshore California waters
 - Anchovy reside in nearshore when stock is high or low
 - Young fish congregate nearshore data may inform recruitment
 - Provide data on coastal abundance (within 2 nm)

Aerial Survey and CPS Management

Methods – Design/Operations

- Coastal areas
- Survey conducted during spring and summer
- Summer 2012 –
 Summer 2016
- Flights dependent on weather and plane availability

Methods – Boat Sampling

- Conducted each season
- Boat directed by plane to fish school
- Aerial observer ID species
- Boat samples fish
 - tow camera (right) or diver video
 - Hook and line (sabiki rig), gillnet, purse seine
- Water temperature, clarity, salinity recorded

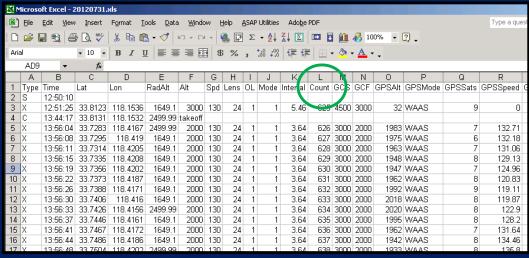
Methods – Design/Operations

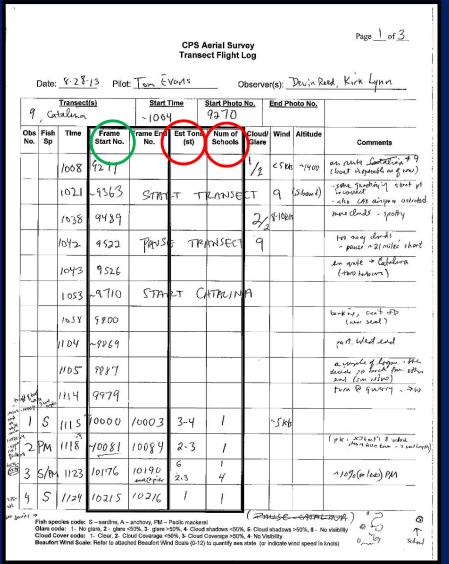
Year	Season	Transect Types	Altitude (ft)	Coastal Bands
2012	Summer	Coastal	1000	N/A
2012	Summer	Open Water	2000	N/A
	Spring	Coastal	1000	N/A
2013	Spring	Open Water	2000	N/A
	Summer	Coastal	1000	N/A
		Open Water	2000	N/A
	Spring	Coastal	1000	3
2014	Cura ra or	Coastal	1500	N/A
	Summer	Open Water	1500	N/A
2015	Spring		NO SURVEY	
2015	Summer	Coastal	1500	2
2016	Spring	Coastal	1500	2
2010	Summer	Coastal	1500	2
2017	Spring		NO SURVEY	
2017	Summer	Coastal	1500	2

Management

- Aerial Survey Methodology Review April 2017
 - Negatively-biased biomass estimate to be added to ATM estimate
 - Use of survey data contingent on development of variance estimator and further work on validation of observer tonnage estimations and species identifications
- Research
 - Collaborative research and EFP for work in 2018 to collect data for variance estimator and observer validation

Summary


- CDFW-CWPA collaborative aerial surveys for CPS abundance conducted since summer 2012
- Survey efforts focused on nearshore areas < 2 nm from shore
- Observed biomass represent minimum estimates of abundance due to depth limitations of observer
- Surveyed areas cover partial range of sardine and anchovy stocks
- Continuing research to develop variance estimations, validate observer tonnage estimates and species identifications, and collect biological information


Methods - Transects

Project 1

- Verify species
- Get tonnage estimate
- Photo passes
- Frame/time noted
- Resume transect

Results - Project 1

Season	Aerial ID		Во	at ID		# S	ample	es Tal	ken	Match
Jea3011		Dive	Tow Video	Hook and Line	Net*	PS	PM	JM	NA	Widtell
	PM, PS		UNID	PM, JM			5			✓
	PM, PS		PM, JM	PM, PS		1	2			✓
Summer 2012	PM, PS (mostly PM)		UNID	PM, JM			5	1		✓
Summer 2012	PM, PS		PM?, PS?	PM, JM, Blacksmith			9	1		✓
	PS, PM? (mostly PS)		PM, PS	PM						✓
	PS, NA		No video - turbid	lizardfish, croaker, smelt						
	Mackerel (mixed?)	PM, PS	PS, PM	PM, JM, Blacksmith						✓
Spring 2013	PM, PS		PS?	PM, PS, JM						✓
	PM, PS	PM, PS	PS?	PM, PS, JM		2	4	1		✓
Summer 2013	PM, PS (mostly PM)	PM, JM, PS	PM, possibly JM	PM, JM			2	2		✓
Summer 2013	Mostly PM	PM, JM	PM, possibly JM	PM, JM			20	3		✓
	PS, PM			PS, PM		2	4			✓
	NA			NA					2	✓
	NA or PM			PM, JM, smelt			3	2		✓
Spring 2014	PM, NA			PM, JM, NA			2	2	1	✓
	NA			NA					36	✓
	NA			PM, JM			10	7		
	NA			PM			7			
Summer 2014	PM, PS (mostly PM)			PM			14			✓
	JM, PS				PM		3			
Summer 2015 *gill net	PS, PM			PM, JM			7	1		✓
giii iici	PM			PM			14			✓
	PS, NA, M									
Summer 2016 *purse seine net	PS, M									
puise serie net	Mix									

Results - Project 1

	Species	# of Fish	We	ight	Len	gth	S	ex Cou	nt	Maturity	Stage	Age ir	n Years
	Species	(n)	Avg (g)	SD	Avg (mm)	SD	М	F	U	Avg	SD	Avg	SD
	PS	1	108	-	198		0	1	0	3	0	4	0
Summer	PM	21	61	29.3	176	18.5	1	0	20	1	0	0	0.3
2012	JM	2	62	7.5	184	6.4	0	2	0	1	0	-	-
	NA	ı	1	1	-	,	1	1	•	1	•	1	-
	PS	2	127	3.2	208	4.2	1	1	0	2	0	2.5	0.7
Spring	PM	4	270	101	266	50.9	2	2	0	2	0.8	1	0.8
2013	JM	1	60	-	173	-	0	0	1	1	0	-	-
	NA	1	1	1	-	-	1	1	-	1	ı	-	-
	PS	1	•	-	-		ı	-		-	•	-	-
Summer	PM	22	131	67.3	222	26.6	2	6	14	1	0	0	0.3
2013	JM	5	83	29.3	251	112.8	2	1	2	1.5	0.5	-	-
	NA	-	-	-	-	-	-	-	-	-	-	-	-
	PS	2	126	20.4	198	11.3	0	2	0	3.5	0.7	3	1.4
Spring	PM	26	121	20	219	10.5	6	18	2	1.9	0.05	0	0
2014	JM	11	97	25.8	202	14.9	0	4	7	1.3	0.07	-	-
	NA	39	14	4.2	103	11.3	23	15	1	2	0.3	1.4	1
	PS	-	-	-	-	-	-	-	-	-	-	-	-
Summer	PM	14	207	44.7	255	18.8	5	9	0	1.6	0.5	1	0.4
2014	JM	-	-	-	-	-	-	-	-	-	-	-	-
	NA	-	-	-	-	-	-	-	-	-	-	-	-
	PS	-	-	-	-	-	-	-	-	-	-	-	-
Summer	PM	24	117	42.3	216	22.1	7	10	7	2	0.9	0	0.5
2015	JM	1	88	-	195	-	0	0	1	1	0	-	-
	NA	-	-	-	-	-	-	-	-	-	-	-	-

Future Work

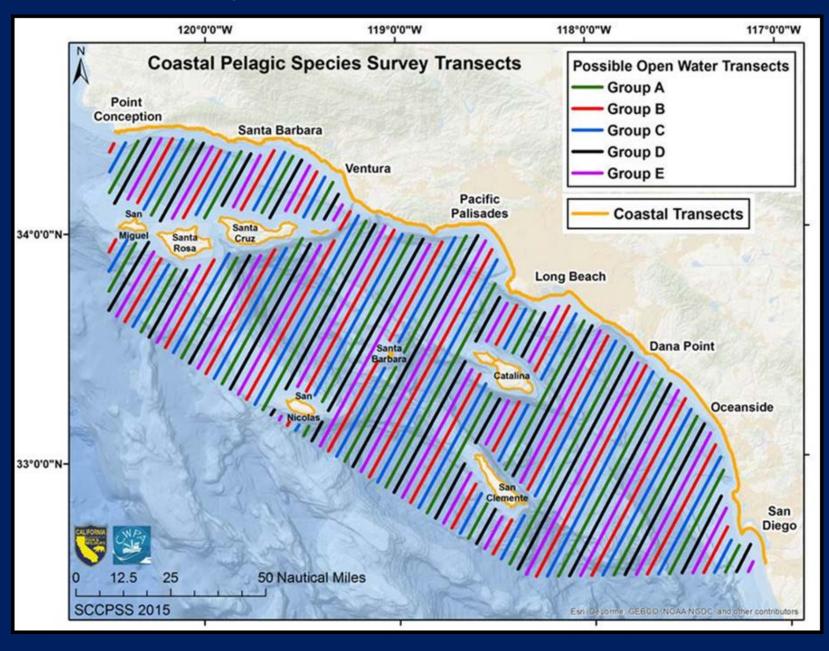
- Continue boat sampling validate species ID, collect additional samples
- Collect more data for Project 2 inshore/offshore ratio
- Potential index of recruitment
- Continued CDFW and CWPA support
 - Next survey May 2017
- Coordinated Aerial-Acoustic surveys
 - Nearshore sampling proposal Summer 2018

Results - Project 1

Year	Season	Dates	Area Surveyed		Sardine			Anchovy	
			(km²)	B (mt)	$D (mt/km^2)$	RE (%)	B (mt)	$D (mt/km^2)$	RE (%)
2012	Summer	7/30 - 8/17	880	7225	8.21	2.8	-	-	-
2013	Spring	4/22 - 5/21	831	1543	1.86	3.3	-	-	-
	Summer	8/1 - 10/4	945	6278	6.64	3.3	15199	16.08	5.2
2014	Spring	5/13 - 6/20	2074	3859	1.86	4.2	7612	3.67	10.8
	Summer 1	8/4 - 8/18	832	62	0.07	3.2	386	0.88	5.3
	Summer 2	8/25 - 8/26	370	0	0	-	568	1.54	5.1
2015	Spring				NO SURVE	1			
	Summer 1	8/7 - 8/29	1736	116	0.07	1.8	0	0	-
	Summer 2	10/1 - 10/6	1650	375	0.23	2.6	0	0	-
2016	Spring 1	4/16 - 5/2	1290	3364	2.61	1.5	1052	0.82	2.0
	Spring 2	5/23 - 6/23	798	7050	8.83	2.0	4224	5.29	3.9
	Summer	8/11 - 9/6	1679	7560	4.50	4.8	29	0.02	4.8

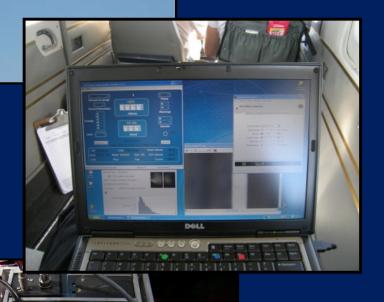
Summary

- Survey covers coastal nearshore areas of Southern California Bight
- Results useful for:
 - Index of nearshore abundance (Project 1)
 - Supplement to ATM offshore data to account for nearshore biomass (Project 2)
 - Minimum absolute abundance estimate for surveyed nearshore areas – added to ATM estimate
 - Biological data provide information on age/length composition of nearshore fish
- Additional data stream for CPS stocks

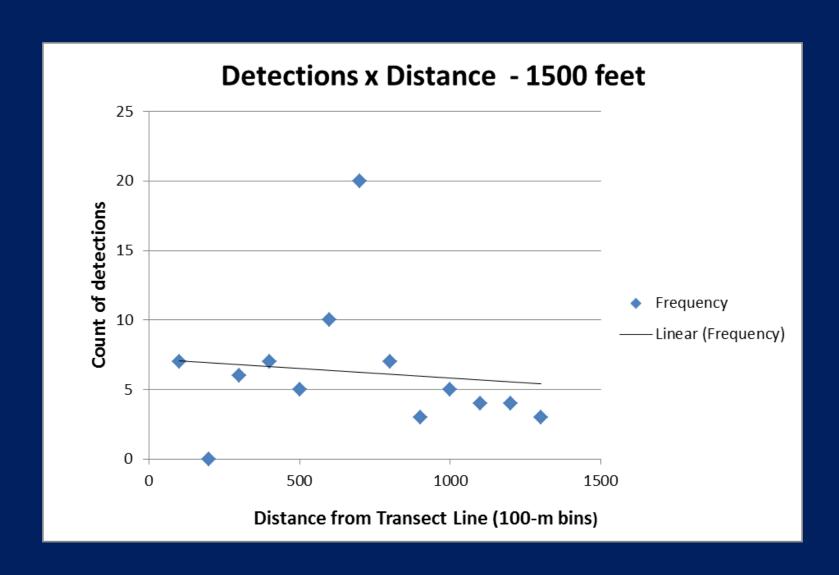

- CDFW Warden-Pilots Tom Evans, Gary Schales, Kevin Kintz
- CDFW Office of Spill Prevention and Response
 - Christian Corbo, Mark Crossland, Sean Moe, Sau Garcia
- CDFW biologist / analyst staff
 - Alex Kesaris, John Budrick, Joe Weinstein, Phil Law, Briana Brady, Chelsea Protasio, Dan Averbuj, Kim Boone, Bill Miller, Paul Ton, Michelle Horeczko, Elizabeth Hellmers, Kenin Greer, Mia Roberts, Julianne Taylor, Roy Kim, Kathryn Johnson, Jeannette Miller
- Collaborative Fisheries Research West

Methods – Design/Operations Project 1

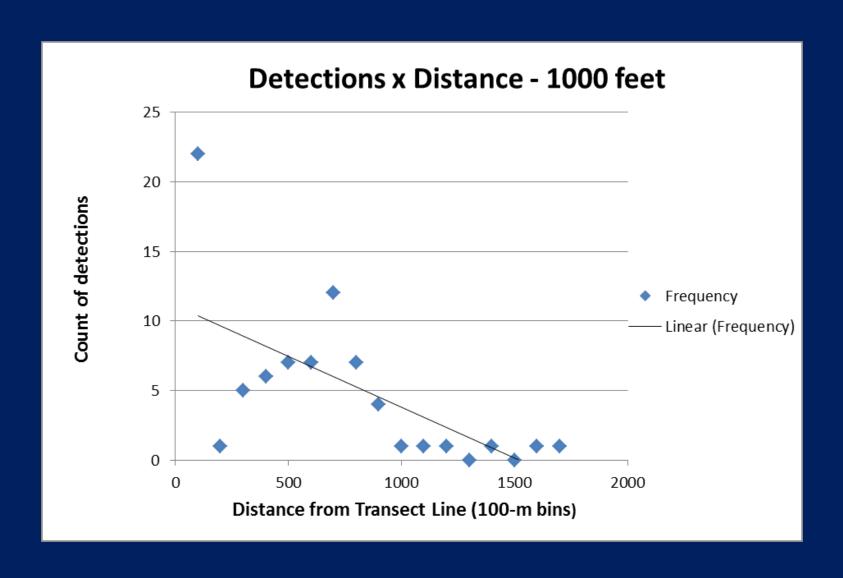
- November 2013, 2015 Survey proposed for methodology review
- April 2014 Informal review @ SWFSC Recommendations included:
 - Focus on spring surveys (recruitment of Northern stock)
 - Focus on coastal areas. Open water areas problematic (detectability, expansion of data)
 - Add survey layers ("bands") from coast to cover more area offshore
 - Shorten time to complete transects
 - Evaluate transect widths
 - Increase sampling from boat surveys
 - Examine day vs. night survey observations
 - Species selectivity when boat sampling


Open Water Transects

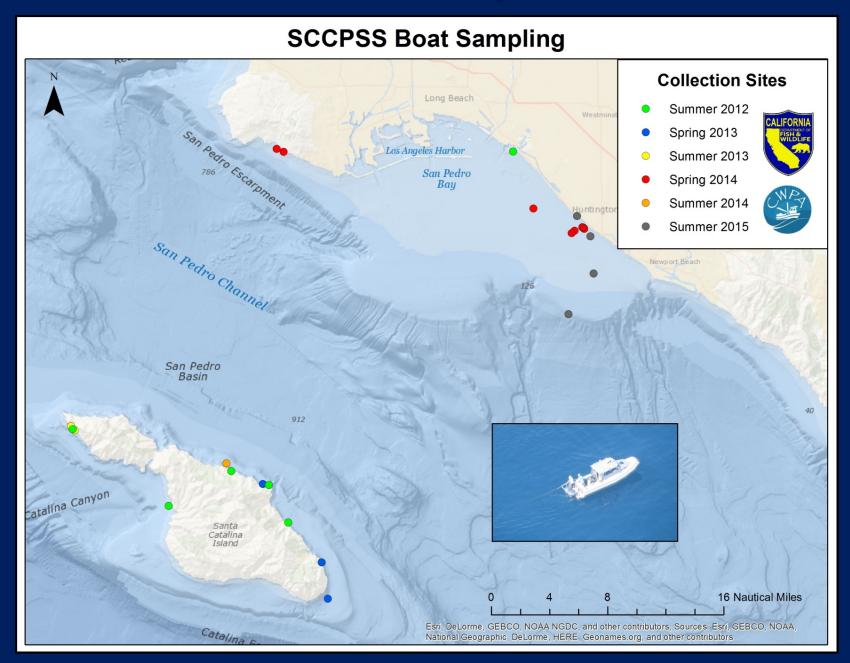
Methods – Analyses


	Adjusted Plane-						
	Estimated Tons	Landed Tons					
i	X	y	y/x	$\mathbf{r_{j}}$ - $\mathbf{r_{0}}$	\mathbf{w}_{j}		$[\mathbf{w}_{j}(\mathbf{r}_{j}\mathbf{-r}_{0})]2$
1	5	4.8	0.97	-0.133	0.00568		0.0000006
2	27	40.2	1.49	0.385	0.03069		0.0001396
3	22.5	25.7	1.14	0.041	0.02558		0.0000011
4	30	38.5	1.28	0.181	0.0341		0.0000382
5	5	10.1	2.02	0.919	0.00568		0.0000273
6	15	10.9	0.73	-0.377	0.01705		0.0000414
7	15	15.4	1.02	-0.079	0.01705		0.0000018
8	9.5	15.0	1.57	0.472	0.0108		0.0000259
9	5	6.7	1.35	0.242	0.00568		0.0000019
10	10.8	17.9	1.66	0.556	0.01228		0.0000466
11	10	2.8	0.28	-0.819	0.01137		0.0000867
12	10	9.6	0.96	-0.142	0.01137		0.0000026
13	9.5	14.9	1.56	0.460	0.0108		0.0000247
14	25	20.0	0.80	-0.302	0.02842		0.0000737
15	11.4	10.7	0.94	-0.161	0.01296		0.0000044
16	47.5	58.7	1.24	0.133	0.054		0.0000513
17	25	31.3	1.25	0.150	0.02842		0.0000181
18	35	44.0	1.26	0.153	0.03979		0.0000368
19	61.75	67.4	1.09	-0.012	0.07019		0.0000007
20	45	45.0	1.00	-0.103	0.05115		0.0000275
21	49.5	38.8	0.78	-0.319	0.05627		0.0003220
22	52.25	23.9	0.46	-0.645	0.0594		0.0014673
23	42.75	46.8	1.10	-0.008	0.0486		0.0000002
24	80	84.9	1.06	-0.042	0.09094		0.0000146
25	23.75	20.2	0.85	-0.253	0.027		0.0000468
26	50	64.2	1.28	0.181	0.05684		0.0001053
27	31.5	40.5	1.29	0.182	0.03581		0.0000423
28	50	76.8	1.54	0.433	0.05684		0.0006049
29	75	84.6	1.13	0.025	0.08526		0.0000044
Sum	879.70	970.55			1		0.0032586
	$\mathbf{r}_0 = \mathbf{\Sigma} \mathbf{y} / \mathbf{\Sigma} \mathbf{x} =$	1.1033		$V(\mathbf{r}_0)$	$= [w_i(r_{i-1})]$	$(x_0)^2 [n/n-1] =$	0.003374998
					, ,	SE =	0.058094732

Methods – Transects Project 1



- Conditions noted
- FMC camera system / GPS
- Camera auto-fire from takeoff
- Photo Overlap setting varied
- Observer looking right
- Plane travel adjusted for glare


Detection Distance

Detection Distance

Results - Project 1

